

TW-MECD-01

WIRELESS CONVENTIONAL SYSTEM EXPANDER MODULE TAURUS SERIES WITH DISPLAY

User instructions manual

GENERAL DESCRIPTION

The TW-MECD-01 permits to integrate a Taurus wireless network to a conventional fire security installation. This solution is useful in environments where a wired installation would be difficult, inconvenient or problematic.

The **TW-MECD-01** has to be connected to a conventional control panel's zone line and a sounder line; the conventional control panel will have then the capability to detect fire alarms in the area protected by the wireless system and the capability of activating or

silencing the wireless sounders of the Taurus system. TW-MECD-01 needs an EN 54-4 certified external power supply source.

TECHNICAL	SPECIFICATIONS *	

	\sim	\sim
		٠
/ • \		-

Specification	Value		
Power supply voltage range	from 9 Vdc to 30 Vdc		
Typical power supply voltage value	12 Vdc		
Maximum voltage allowed by the conventional zone line's dipole	30 V		
Maximum voltage allowed by the sounder line's dipole	30 V		
Typical current load (Taurus system in non-alarmed standby condition)	40 mA (12 Vdc)		
Maximum current load (Taurus system in non-alarmed standby condition)	55 mA (12 Vdc)		
Wireless frequency band	868 MHz		
Radiated power value	14 dBm (25 mW)		
Number of wireless channels	66		
Wireless communication range **	200 m in open space		
Maximum number of linked TW-ME-01 expander devices	15		
Maximum number of linked TW-ME-01 expander devices in serial cascade order	8		
Maximum number of linked child devices	32		
Technical temperature range	from -20 °C to 70 °C		
EN 54 approved temperature range	from -10 °C to 55 °C		
Humidity range without condensing	from 5% RH to 90% RH		
Device dimensions	235 mm x 160 mm x 70 mm		
Device weight	700 g		
Technical IP rating	65		
EN 54 approved IP rating	30		

* See TDS-TWMEC technical specification document for further technical data.

* Environmental physical obstacles can reduce this value.

WARNINGS AND LIMITATIONS		
Our devices use high quality electronic components and plastic materials that are highly resistant to environmental deterioration. However, after 10 years of continuous operation, it is advisable to replace the devices in order to minimize the risk of reduced performance caused by external factors.	して	
Ensure that this device is only used with compatible control panels. Detection systems must be checked, serviced and maintained on a regular basis to confirm correct operation. Smoke sensors may respond	0051	
differently to various kinds of smoke particles, thus application advice should be sought for special risks.	22	
Sensors cannot respond correctly if barriers exist between them and the fire location and may be affected by special environmental conditions. Refer to and follow national codes of practice and other internationally recognized fire engineering standards. Appropriate risk assessment should be carried out initially to deter- mine correct design criteria and updated periodically.	TU1810CPR	
Use only in Taurus fire detection and alarm systems.	ARGUS SECURITY S.R.L. Via del Canneto, 14 34015 Muggia (TS) Italy	
All devices are supplied with the benefit of a limited 5 years warranty relating to faulty materials or manufacturing defects, effective from the production date indicated on each product. This warranty is invalidated by mechanical or electrical damage caused in the field by incorrect handling or usage. Product must be returned via your authorized supplier for repair or replacement together with full information on any problem identified. Full details on our warranty and product's returns policy can be obtained upon request.	TW-MECD-01 EN 54-25:2008 EN 54-18:2005	

CONTROL PANEL COMPATIBILITY

TW-MECD-01 is compatible with most of the conventional control panels available on the market; nevertheless:

- check that the control panel's features and technical specifications ranges and values are suitable for the TW-MECD-01;
- control of the wireless sounders require that the control panel is equipped with a sounder line for activation and silencing.

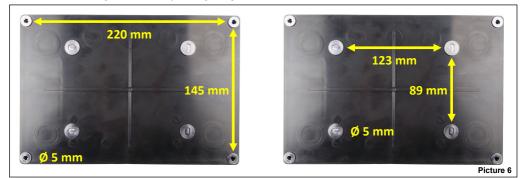
CORRECT DEVICE POSITIONING

- Apply mandatory codes of practice and standards of your country.
- Use wireless channels that are free or reasonably free from other interfering signals; possibly avoid using channels that are already used by other systems.
- Don't install wireless devices in the vicinity of equipment using large amounts of electrical current.
- Don't install wireless devices in the vicinity of large metal objects, structures or metal ceiling structures.
- Don't install wireless devices in the vicinity of fluorescent light fixings.
- Don't install wireless devices in the vicinity of computers, their cabling and their network cabling.
- Wireless devices, in their final installation location, must have a minimum distance of at least 2 meters between each other.
- Install central and expander network nodes at an height of at least 2 2.5 meters from the floor.
- Fix central and expander network nodes flat on the wall.
- Environmental temperature and humidity must lay in the ranges specified in the technical specifications at the beginning of this manual. Environmental compatibility applies to all devices in general.
- Environmental conditions must be withstandable by the installed devices.
 Check the device's IP rating adequacy with the installation's environmental characteristics; IP rating value is found in the technical specifications at the beginning of this manual.
 Environmental compatibility applies to all devices in general.
- Make sure that all child devices (in their final installation location) are reached by good strong wireless signals from their father nodes (central and expander ones).
- Make sure that all father nodes (central and expander ones, in their final installation location) are reached by good strong wireless signals from their child devices.
- Make sure that all network nodes (central and expander ones, in their final installation location) are reached by good strong wireless signals from their linked-to network nodes.

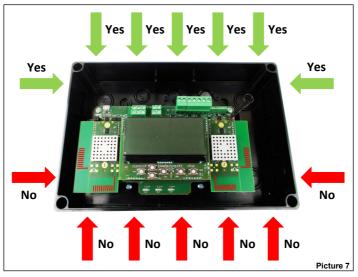
INSTALLATION

 Remove the two plastic screw covers from the front side. Lifting the protective covers using the gaps at their angles makes this operation easier.

- 3) Remove the front protective cover.
- 4) Remove the two holding screws at the base of the printed circuit board.



5) Slide upwards the board and extract it from the box.



4

6) Drill into the wall the required number of holes you need to fix the box. Refer to the following pictures for the distances between the four "IP safe" holes and the distances between the four mould-printed knock-out slots on the rear side of the box. Use the IP safe holes if you want to preserve the original IP rating of the device box, otherwise use the internal knock-out slots. If you use the internal knock-outs, the manufacturer is discharged from the liability following damage to the device that can occur from environmental factors.

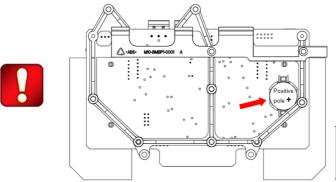
7) The box is designed with M16/M20/M25 knock-out holes to provide IP safe compatibility with electrical cable glands. Knock out the required ones. If one or more holes have been opened but remain unused, fill them with suitable IP safe blanking plugs in order to maintain the native ingress protection degree of the box. It is suggested to select external cabling entries that are at a certain distance from the device's antennas. Upper side entries of the box are the best choice.

- 8) Install the required cable glands.
- 9) Fix the device box to the wall; use adequate screws and avoid the countersunk type.
- 10) Slide into the box the printed circuit board.
- 11) Fix the board to the box using the two screws you removed before.
- 12) Perform the required wiring.
- 13) Program the device.
- 14) Reinstall the front cover.
- 15) Screw the front cover: fixing has to be IP safe and not loose.
- 16) Reinstall the plastic screw covers.
- 17) Check that your installation is safe, secure and fault-free; perform the functional test.

```
info@argussecurity.it
```

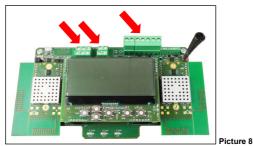

WIRING - PRELIMINARY NOTES

- Apply mandatory codes of practice and safety standards of your country.
- This device requires a EN 54-4 certified power supply source.
- Allow a maximum cable length of 3 meters between the EN 54-4 power supply source and the device.
- When performing wiring operations disconnect the power supply source.
- The printed circuit board is sensitive to electrostatic discharges: take suitable precautions when handling it in order to avoid damage.
- Connect the wire terminals to their correct blocks on the printed circuit board; keep this manual handy as a reference for good connection implementation.
- Safely screw the wire terminals to their corresponding blocks.
- Avoid mechanically loose or weak connections.
- Avoid accidental shorts between terminals.
- Allow sufficient wire length into the device box so you can comfortably screw the terminals to their corresponding blocks; this is also important to avoid mechanical stress on terminal-block couplings.


CONVENTIONAL EXPANDER BACKUP BATTERY

The printed circuit board is sensitive to electrostatic discharges: take suitable precautions when handling it in order to avoid damage.

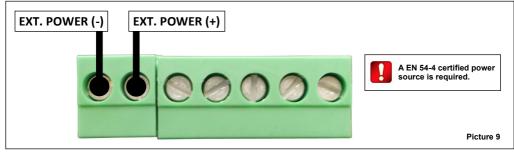
Ensure the Conventional Expander Backup Battery is correctly installed on the Conventional Expander. The Conventional Expander Backup Battery has to be inserted to preserve the Time clock and Date when the Conventional Expander is not powered by loop or external PSU. Moreover, the Conventional Expander Backup Battery is needed also in order to use the auto-address procedure on Fire Control Panel.


The Conventional Expander Backup Battery is located on the rear of the Conventional Expander board. Make sure to insert the battery with the correct polarity; positive pole up.

Battery Specification	Value	
Battery type	CR2032 Lithium Battery	

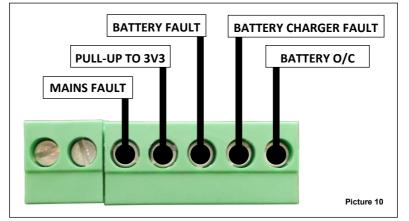
TERMINAL BLOCKS LOCATION

Terminal blocks are located on the printed circuit board in the positions highlighted in the following picture:

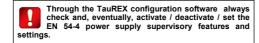

TW-MECD-01 WIRING PROCEDURE IN DETAIL

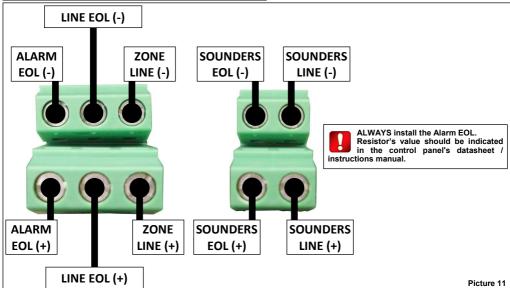
In detail, the wiring procedure for the TW-MECD-01 is as follows:

- 1) Connect the power supply terminals.
- 2) Connect the power supply's monitoring inputs (optional).
- 3) Connect the conventional zone line's terminals.
- Connect the sounder line's terminals (optional).
- 5) ALWAYS install the Alarm end of line (EOL) resistor as specified in this manual. Resistor's value should be indicated in the control panel's datasheet / instructions manual.
- 6) Install the other EOL resistors as specified in this manual. Resistors' values should be indicated in the control panel's datasheet / instructions manual.



WIRING - POWER SUPPLY'S TERMINAL BLOCKS LAYOUT


Block Description		Note	
EXT. POWER (-)	Power supply, negative pole	EN 54-4 certified power source is required	
EXT. POWER (+)	Power supply, positive pole	EN 54-4 certified power source is required	Tab


WIRING - POWER SUPPLY'S FAULT DETECTION INPUTS - TERMINAL BLOCKS LAYOUT

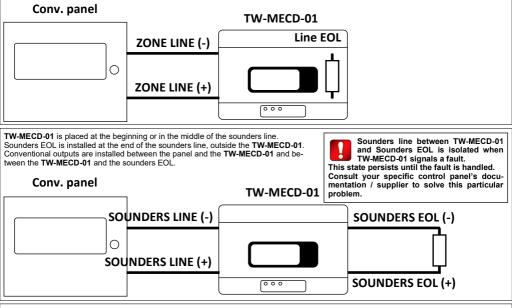
Block	Description	Note		
		Check settings.		
MAINS FAULT	Mains' power supply fault input	See: EN 54-4 POWER SUPPLY SUPERVISORY FEA- TURES MANAGEMENT		
PULL-UP TO 3V3	Internal pull-up to 3.3 V	-		
BATTERY FAULT	Battery fault's input	Check settings.		
BATTERY CHARGER FAULT	Battery charger fault's input	See: EN 54-4 POWER SUPPLY SUPERVISORY FEA-		
BATTERY O/C	Battery open circuit fault's input	TURES MANAGEMENT		

Table 2

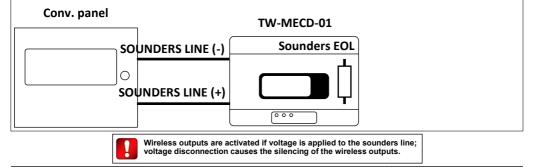
Block	Description	Note
Alarm EOL (-)	Alarm EOL resistor. Negative (-)	
Alarm EOL (+)	Alarm EOL resistor. Positive (+)	
Line EOL (-)	Line EOL resistor. Negative (-)	
Line EOL (+)	Line EOL resistor. Positive (+)	
Zone line (-)	Conventional input zone line. Negative (-)	No voltage causes the reset of ALL wireless devices
Zone line (+)	Conventional input zone line. Positive (+)	No voltage causes the reset of ALL wireless devices

Table 3

Block	Description	Note	
Sounders EOL (-)	Sounders EOL resistor. Negative (-)	Resistor value depends on the model of the control panel	
Sounders EOL (+)	Sounders EOL resistor. Positive (+)	Resistor value depends on the model of the control panel	
Sounders line (-)	Sounders line. Negative (-)	Wireless outputs are activated if voltage is applied. Voltage disconnection causes the silencing of the wireless outputs	
Sounders line (+)	Sounders line. Positive (+)	Wireless outputs are activated if voltage is applied. Voltage disconnection causes the silencing of the wireless outputs	


Table 4

WIRING - ZONE AND SOUNDER LINES' WIRING LAYOUTS


TW-MECD-01 is placed at the beginning or in the middle of the zone line. Line EOL is installed at the end of the zone line, outside the TW-MECD-01. Conventional devices are installed between the panel and the TW-MECD-01 and between the TW-MECD-01 and the Line EOL.

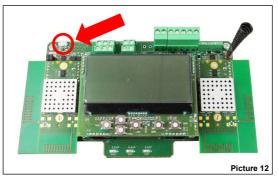
Convertional devices are installed between the parter and the TW-MECD-01 and the Line EOL. Conv. panel
TW-MECD-01
TW-MECD-01
O1 signals a fault.
This state persists until the fault is handled.
Consult your specific control panel's documentation / supplier to solve this particular
problem.
LINE EOL (-)
LINE EOL (-)
LINE EOL (+)
O O O

TW-MECD-01 is placed at the end of the zone line. Line EOL is installed inside the TW-MECD-01. Conventional devices are installed between the panel and the TW-MECD-01.

TW-MECD-01 is placed at the end of the sounders line. Sounders EOL is installed inside the TW-MECD-01. Conventional outputs are installed between the panel and the TW-MECD-01.

Zone line between TW-MECD-01 and

Line EOL is isolated when TW-MECD-


THE PURPOSES OF PROGRAMMING

Programming is done for the following purposes:

- activating or deactivating the signalling of power supply's fault events;
- activating or deactivating the signalling of tamper events;
- integrating the TW-MECD-01 into the wireless system; this means creating a wireless exclusive direct link with TW-ME-01 expanders;
- creating wireless exclusive links with local child devices (detectors, call point, sounders....).

PROGRAMMING SETUP PROCEDURE

- 1) Install on your personal computer the TauREX software.
- Connect your personal computer to the printed circuit board; for this operation a standard-to-micro USB cable is used; micro USB socket location is highlighted in the picture below:

3) Make sure the device is powered up.

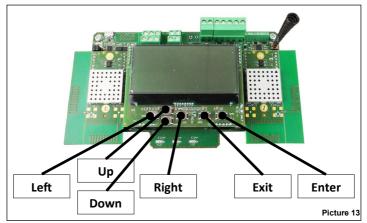
PROGRAMMING

For more data about programming this device refer to the following documentation:

- the TauREX software manual;
- the user instructions manuals of the Taurus series' products.

THE USER'S KEYPAD AND DISPLAY

The device keypad and display system is used for two basic purposes:



In this edition of the manual, programming procedures through the keypad / display system is not described. Use TauREX instead.

- Diagnose the TW-MECD-01 and the system: check event occurrences, faults, settings, etc.
- Program device and system's settings.

Keypad and display system is the manual alternative to the use of the TauREX configuration software.

THE USER'S KEYPAD

Keypad buttons are:

- Up Pulls up the display's menu selection. If applied to a value, the selected digit is increased.
- Down Pushes down the display's menu selection. If applied to a value, the selected digit is decreased.
- Left Returns to the previous menu. If editing a value, sets the cursor to the left digit.
- Right Enters into the next submenu. Some options require exclusively the "Enter" key to gain access to the next submenu. If editing a value, sets the cursor to the right digit.
- Enter Enters into the next submenu. Confirms the selected setting.
- Exit Returns to the previous menu.

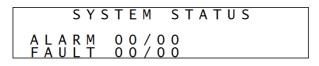
THE USER'S DISPLAY

In a normal and eventless condition the display will have picture 14's lookalike.

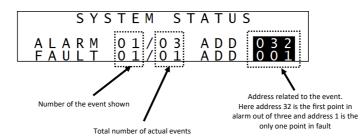
Of the main window, displayed data has the following meaning:

TM-ConvExp	Indicates that this device is a TW-MECD-01.
------------	---

- Sys: 038 Indicates the number that identifies the Taurus wireless system (system code); in this case 038.
- N: 09/45 "Network" channels; system-wide wireless network numbered channels that are used by the TW-MECD-01 to exchange data with the expanders; in this case channel 9 and channel 45.
- F: 55/25 "Field" channels; local wireless network numbered channels that are used by the TW-MECD-01 to exchange data with local child devices; in this case channel 55 and channel 25.


	Sys: 038	
	N: 09/45	
TM-ConvExp	F: 55/25	
	TM-ConvExp	N: 09/45

Picture 14



THE USER'S DISPLAY WITH THE LID MOUNTED

In a normal and eventless condition, the display will show the following screen, reporting its overall system status.

In case events have occurred, being them alarms or faults, they will be reported as in the example below, cycling as many screens as required to report all active events.

EN 54-4 POWER SUPPLY SUPERVISORY FEATURES MANAGEMENT

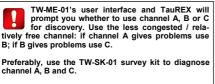
On TW-MECD-01's properties window of the TauREX software, you will have the following options:

EN54-4 Power Supply Unit:	Mains fault	Disabled	Open	Low
	Battery fault	Disabled	Open	Low
	Battery charger fault	Disabled	Open	Low
	Battery O/C	Disabled	Open	Low

Picture 15

Selected option	"Open" is selected	"Low" is selected	
Mains fault	A fault condition is raised if there is an open circuit between MAINS FAULT terminal block and EXT. POWER (-). Signal is in a high impedance state.		
Battery fault	A fault condition is raised if there is an open circuit between BATTERY FAULT terminal block and EXT. POWER (-) . Signal is in a high impedance state.	A fault condition is raised if there is a short circuit between BATTERY FAULT and EXT. POWER (-). Signal is in a low state.	
A fault condition is raised if there is an open circuit between BATTERY CHARGER FAULT terminal block and EXT. POWER (-) . Signal is in a high impedance state.		A fault condition is raised if there is a short circuit between BATTERY CHARGER FAULT and EXT. POWER (-). Signal is in a low state.	
Battery O/C A fault condition is raised if there is an high impedance between BATTERY O/C terminal block and EXT. POWER (-). Signal is in a high impedance state.		A fault condition is raised if there is a short circuit between BATTERY O/C and EXT. POWER (-). Signal is in a low state.	

THE DISCOVERY OPERATION


The discovery of all possible routes for the wireless messages travelling throughout the system is called "discovery".

The discovery operation concerns only the network devices (TW-MECD-01 and TW-ME-01s) and not the child devices.

Discovery is performed only once at the beginning, during the installation phase. It can be performed successively (e.g. following environmental changes) in order to redefine the best messaging routes for the system.

Discovery procedure:

- Set all TW-ME-01 system's devices in "Discovery mode". This operation is accomplished only through the TW-ME-01's keypad / display system. See the TW-ME-01's manual for precise instructions.
- Trigger and complete the discovery operation from TauREX. See TauREX's manual.

Make sure you specify the same channel on the TW-ME-01s and TauREX.

TW-MECD-01 does not require any particular keypad / display operation for the discovery operation.

EVENT SIGNALLING

Wireless system's events, like faults and alarms, are notified to the user in both of the following ways:

- through specific LEDs, visible even if the printed circuit board is hidden by the front cover;
- through written messages visualized on the LCD display; the LCD is visible only if the front cover is not installed.

LED SIGNALS - DEVICE IS POWERED ON

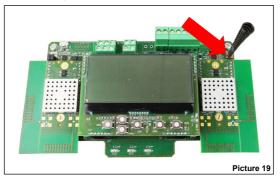
The blinking green LED above the "Power" icon indicates that the device is switched on.

Picture 16

LED SIGNALS - ALARM

The red LED above the "Flame" icon indicates that an alarm event has occurred.

LED SIGNALS - FAULT


The yellow LED above the "Spanner" icon indicates that a fault event has occurred.



TAMPER DETECTION

TW-MECD-01 is equipped with a tamper detection switch; when the front cover is removed, the switch-spring system is released, causing a temper event message to be routed to the control panel.

Tamper detection capability can be disabled / enabled from TauREX.

ONBOARD DISPLAY'S EVENT SIGNALLING

Event occurrences are notified on the TW-MECD-01's onboard display as in the following example:

		n: 001 / 001 RF Addr.01:00 Taurus Coordinator Tamper	Picture 20			
Where:	n:	The "n:" row indicates the number of the message event and the total of the messages available for To go through the message events use the left / right and up / down keys.				
	RF Addr.	This row indicates the address of the device "affected" by the event. "RF Addr." is the wireless address which is a composed by the network device address (TW-MECD-01's , TW-ME-01's) and the child device address (if "0" refers to the network device itself).				
	Taurus Coordinator	In this example it is the generic description of the TW-MECD-01.				
	Tamper	In this example it is a "tamper" detection event type.				
During e	vent signalling, icons are	e also displayed, carrying the following meanings:				

Missing link event detected. Generic fault event detected. Includes power supply faults. Communicating with computer.		File alarm.	$\mathbf{Q}_{\mathbf{n}}$	Tamper event detected.
Generic fault event detected. Includes power supply faults.	X	Missing link event detected.		Low battery fault.
	s			Communicating with computer.

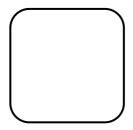
Picture 21

FUNCTIONAL TEST - ALARM TESTING

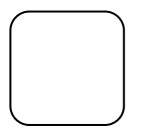
Test the TW-MECD-01's alarm signalling capability as follows:

- 1) Activate an alarm on the Taurus system.
- 2) Check that the TW-MECD-01 locally displays the alarm event.
- 3) Check that the control panel displays the alarm event.
- 4) Check that Taurus and conventional output devices activate (e.g. sounders...).
- 5) Reset all the system from the control panel.

FUNCTIONAL TEST - FAULT TESTING

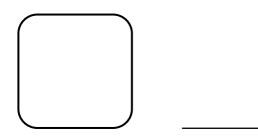

Test the TW-MECD-01's fault signalling capability as follows:

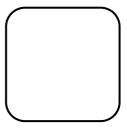
- 1) Activate a fault event.
- 2) Check that the TW-MECD-01 locally displays the fault event.
- 3) Check that the control panel displays and notifies the fault event.
- 4) Reset all the system from the control panel.

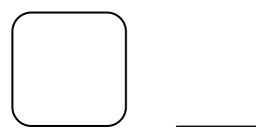


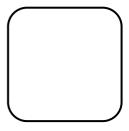
Apply mandatory testing and periodic testing policies of your country.

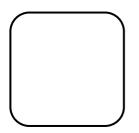

NETWORK DEVICE QR CODE

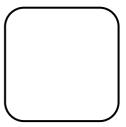


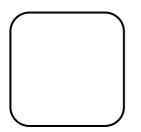

NOTE



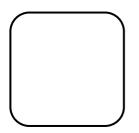

NOTE

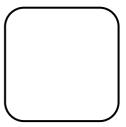


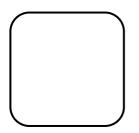

NOTE

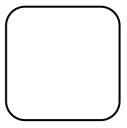


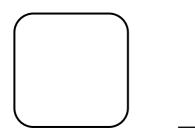
NOTE

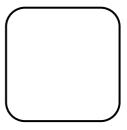


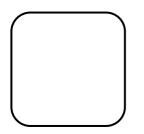

NOTE

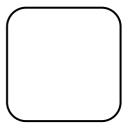


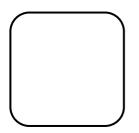

NOTE

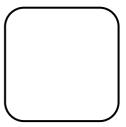


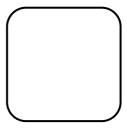

NOTE

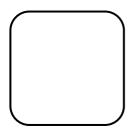


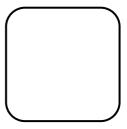

NOTE

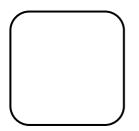


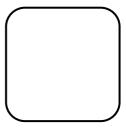

NOTE

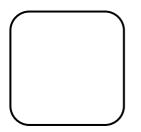

NOTE

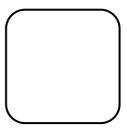


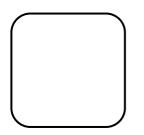

NOTE

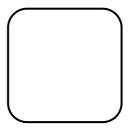


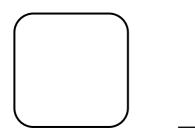

NOTE

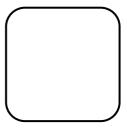



NOTE




NOTE




NOTE

NOTE

