

CPR – Construction Products Regulation EU n.305/2011 Declaration of Performance – DoP

Declaration in accordance with Commission Delegated Regulation EU n.574/2014 which amends Annex III of Regulation n.305/2011

CPR - Regolamento Prodotti da Costruzione EU n.305/2011

Dichiarazione di Prestazione - DoP

Dichiarazione ai sensi del Regolamento Delegato UE n.574/2014 della Commissione che modifica l'Allegato III del Regolamento n.305/2011

N°: LI5510CPR

1. Unique identification code of the product-type:

Codice di identificazione unico del prodotto-tipo:

Product type: Heat Detectors; Smoke Detector with scattered light, transmitted light or ionization; Wireless; Multisensor Fire Detector

Model Number and Description: LW-DMCO-01 - Bi-directional wireless addressable multicriteria detector with variable sensitivity

2. Intended use/es:

Usi previsti:

Fire Safety

Point detectors for use in fire detection and fire alarm systems installed in and around buildings Fire detection and fire alarm systems installed in and around buildings

Sicurezza Antincendio

Rivelatori puntiformi per l'uso in sistemi di rivelamento e allarme antincendio installati all'interno ed intorno agli edifici Sistemi di rivelamento ed allarme antincendio installati all'interno ed intorno agli edifici

3. Manufacturer:

Fabbricante:

ARGUS SECURITY Srl

Via del Canneto 14
Valle delle Noghere - 34015 Muggia - Trieste - Italy info@argussecurity.it
www.argussecurity.it

4. Authorised representative:

Mandatario:

N/A

5. System/s of AVCP:

Sistemi di VVCP:

System 1

6. Harmonised standard(s):

Norme Armonizzate:

EN 54-5:2017 + A1:2018

EN 54-7:2017

EN 54-25:2008

7. Notified Body/ies:

Organismi Notificati:

Bre Global Assurance (Ireland) Ltd, No. 2831

Product code: LW-DMCO-01 CoP Reference: 2831-CPR-F2681

8. Declared performance/s:

Prestazioni Dichiarate:

ESSENTIAL CHARACTERISTICS	CLAUSE APPLICABLE	PERFORMANCE	REGULATORY CLASSES	HARMONISED STANDARD
Operational reliability:	AI I LICABLE		CLASSES	STANDARD
Position of heat sensitive element	4.2.1	The heat sensitive element(s) or at least part of it, except elements with auxiliary functions (e.g.characteristic correctors), are a distance ≥15mm from the mounting surface of the point heat detector.		
Individual alarm indication	4.2.2	Category A1R The heat detector is provided with an integral red visual indicator and can remain identified until the alarm is reset. The visual indicator is visible from a distance of 6 m directly below the point heat detector,in an ambient light intensity up to 500 lx.		
Connection of ancillary devices	4.2.3	Open or short circuit failures of connection to ancillary device do not prevent the correct operation of the detector		
Monitoring of detachable point heat detectors	4.2.4	A fault condition is signaled when the detector is removed from the mounting base.		
Manufacturer's adjustments	4.2.5	It is not possible to change the manufacture's settings expept by special means (e.g. a special code or tool, or by breaking or remove a seal).		
Onsite adjustments of response behavior	4.2.6	N/A		
Software controlled detectors (when provided)	4.2.7	The software documentation and the software design complies supplied by the manufacturer with the requirements of this standard.		
Nominal activation conditions/sensitivity:				EN 54-5:2017 + A1:2018
Directional dependence	4.3.1	The response time of the point dectetor do not unduly depend on the direction of airflow around the point heat detector.		,
Static response temperature	4.3.2	The response temperatures of the point heat detectors lie between the minimum and maximum static response temperatures, according to the category of the point heat detector in Table 1 above.		
Response times from typical application temperature	4.3.3	The response times of the point heat detector lie between the lower and upper response time limits for the appropriate point heat detector category in Table 2 above.		
Response times from 25°	4.3.4	The response time at 3 K min ⁻¹ exceeds 7 min 13 s and the response time at 20 K min ⁻¹ exceeds 1 min 0 s.		

4.3.5	No alarm or fault signal was given at high ambient temperatures appropriate to the anticipated service temepratures. A1R 3 K min ⁻¹ , Lower limit, 1 min 20 s and upper limit 13 m 40 s. 20 K min ⁻¹ , Lower limit, 12 s and upper limit 2 m 20 s.			
4.3.6	The response times of the point heat detectors lie between the lower ad upper response time limits specified in Table 2 above.			
4.4.1	N/A			
4.4.2	Suffix R, the point heat detector maintains the response requirements of its category, in table above, for high rates of rise of temperature from initial temperature below the typical application temperature applicable to the category market.			
	Point heat detector category	Initial conditioning temperature °C		
	A1R	5 ±2		
4.5	The point heat detector does not unduly depent on variation in the supply parameters and lie between the lower and upper response time limits specified in Table 2 above.			
4.6.1.1	transition to the	t signal was given during the conditioning temperature or d at the condition temperature		
	A1R: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtaine in 4.3.6			
4.6.1.2	No fault signal was given on reconnection attributable to the endurance conditioning			
	A1R: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6			
4.6.2.1	No alarm or fault signal was given during the conditioning.			
	Lower temperatu (40±2) °C	ure: (25±3) °C Upper temperature:		
	Relative humidit At lower tempera At upper temper	•		
		I was not less than 30 s and did compared with the time obtained		
	4.4.1 4.4.2 4.6.1.1	No alarm or fault temperatures as service temepra A1R 3 K min-1, Lowe 13 m 40 s. 20 K min-1, Low 20 s. 4.3.6 The response the between the low specified in Tab 4.4.1 N/A 4.4.2 Suffix R, the point response requires an initial temperature applies. Point heat detector category A1R 4.5 The point heat on variation in the between the low specified in Tab 4.6.1.1 No alarm or fault transition to the during the period at		

EN 54-5:2017 + A1:2018

A1R

Damp heat, steady-state (endurance)	4.6.2.2	No fault signal was given on reconnection attributable to the endurance conditioning.
		Conditioning
		Temperature: 40 ±2 °C
		Relative Humidity: 93 ±3 % Duration:21 days
		A1R: 20 K min-1 was not less than 30 s and did
		not exceed 30 s compared with the time obtained in 4.3.6
Corrosion resistance		BS: 20 K min-1 was not less than 1 min and did
Sulphur dioxide (SO ₂)	4.6.3	No fault signal was given on reconnection
corrosion (endurance)		attributable to the endurance conditioning.
		Conditioning Temperature: 25 ±2 °C
		Relative Humidity: 93 ±3 %
		SO ₂ concentration: 25 ±5 ppm (by volume) Duration :21 days
		A1R: 20 K min ⁻¹ was not less than 30 s and did
		not exceed 30 s compared with the time obtained in 4.3.6
Vibration resistance		
Shock (operational)	4.6.4.1	No alarm or fault signal was given during the conditioning period or an additional 2 min.
		For specimen with a mass ≤ 4,75 kg :
		Shock pulse type: Half sine
		Pulse duration : 6 ms Peak acceleration: 10X (100-20M) ms-2 (M is
		specimen mass in Kg) Number of directions: 6
		Pulses per direction: 3
		A1R: 20 K min-1 was not less than 30 s and did
		not exceed 30 s compared with the time obtained in 4.3.6
Impact (operational)	4.6.4.2	No alarm or fault signal was given during the
		conditioning period or an additional 2 min.
		Conditioning: Impact energy: 1,9 ±0,1 J
		Hammer velocity: 1,5 ±0,13 ms ⁻¹
		Number of impacts: 1
		A1R: 20 K min ⁻¹ was not less than 30 s and did
		not exceed 30 s compared with the time obtained in 4.3.6
Vibration, sinusoidal (operational)	4.6.4.3	No fault signal was given during the conditioning Conditioning:
(operational)		Frequency range: 10 to 150 Hz
		Acceleration amplitude: 5 ms ⁻² (≈0,5 gn) Number of axes : 3
		Sweep rate: 1 octave min ⁻¹
		Number of sweep cycles: 1 per axis
		A1R: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained
		in 4.3.6

EN 54-5:2017 + A1:2018

Vibration, sinusoidal (endurance) Electrical stability EMC immunity (operational)	4.6.4.4	attributable to the Conditioning: Frequency rang Acceleration am Number of axes Sweep rate: 1 o Number of sweep rate: 20 K minnot exceed 30 s in 4.3.6 Compliance in Esignal was giver A1R: 20 K min-1	plitude: 10 ms-2(≈1,0 gn) : 3		
		in 4.3.6	T		
ESSENTIAL CHARACTERISTI	CS	CLAUSE APPLICABLE	PERFORMANCE	REGULATORY CLASSES	HARMONISED STANDARD
Operational reliability:					
Individual alarm indication		4.2.1	The visual indicator(s) are visible from a distance of 6 m in an ambient light intensity up to 500lx.		
Connection of ancillary devices		4.2.2	Open or short circuit failures of connection to ancillary device did not prevent the correct operation of the detector.		
Monitoring of detachable detectors		4.2.3	A fault condition is signaled when the detector is removed from the mounting base.		
Manufacturer's adjustments		4.2.4	It is not possible to adjust the detector settings without the use of a special tool to access into the detector or use of a code to enabling entry into the panel programming software.		
On site adjustment of response behavior		4.2.5	The mode(s) of operation are adjustable from the Control and Indicating Equipment by use of a loop communication protocol. Access to enable mode changes is by software control of the protocol communication.	None	EN 54-7:2018
Protection against the ingress of foreign bodies		4.2.6	The chamber is designed so that a sphere of diameter (1,3±0,05) mm cannot pass into the sensor chamber.		
Response to slowly developing fires		4.2.7	The provision of "drift compensation" (e.g. to compensate for sensor drift due to the build-up of dirt in the detector), does not lead to a significant reduction in the detectors sensitivity to slowly developing fires.		
Software controlled detectors (when provided)		4.2.8	The software documentation and the software design complies with the requirements of EN 54-7:2018.		

4.3.1	Ratio of response values m_{max} : $m_{min} \le 1.6$ Lower response value, m_{max} : $m_{min} > 0.05 \text{ dB m}^{-1}$		
4.3.2	Ratio of response values m_{max} : $m_{min} \le 1.6$ Lower response value, m_{max} : $m_{min} > 0.05 \text{ dB m}^{-1}$		
4.3.3	Ratio of response values m_{max} :m ≤ 1.33 Ratio of the response values $m_{min} \leq 1.5$ Lower response value, $m_{min} \geq 0.05$ dB m ⁻¹		
4.4.1	Ratio is > 0.0625 and < 1.60 and the point smoke detector did not emit a fault nor alarm signal during the test with aerosol-free air		
4.4.2	The specimen did not emit neither an alarm nor a fault signal and Ratio of response thresholds m _{max} :m _{min} ≤ 1.6		
4.5	Ratio of response values m _{max} :m _{min} ≤ 1.6 Lower response value, m _{min} ≥ 0.05 dB m ⁻¹		
4.6	Evaluated as meeting the requirements of TF2 toTF5		
4711	The enceimen did not emit		
4.7.1.1	neither an alarm nor a fault signal and Ratio of response values m _{max} :m _{min} < 1.6		EN 54-7:2018
4.7.1.2	The specimen did not emit neither an alarm nor a fault signal and Ratio of response values m _{max} :m _{min} < 1.6		
		Throphold	
4.7.2.1	The specimen did not emit neither an alarm nor a fault signal and Ratio of response values m _{max} :m _{min} < 1.6	Trieshold	
4.7.2.2	No fault signal, attributable to the endurance conditioning was given on reconnection of the specimen and Ratio of response values m _{max} :m _{min} ≤ 1.6		
4.7.3	No fault signal, attributable to the endurance conditioning was given on reconnection of the specimen and Ratio of response values m_{max} : $m_{min} \le 1.6$		
	4.3.2 4.3.3 4.4.1 4.4.1 4.4.2 4.5 4.6 4.7.1.1 4.7.1.2	m _{max} :m _{min} ≤ 1.6 Lower response value, m _{max} :m _{min} > 0.05 dB m ⁻¹ 4.3.2 Ratio of response values m _{max} :m _{min} ≤ 1.6 Lower response value, m _{max} :m _{min} > 0.05 dB m ⁻¹ 4.3.3 Ratio of response values m _{max} :m ≤ 1.33 Ratio of the response values m _{max} :m ≤ 1.33 Ratio of the response values m _{min} ≤ 1.5 Lower response value, m _{min} ≥ 0.05 dB m ⁻¹ 4.4.1 Ratio is > 0.0625 and < 1.60 and the point smoke detector did not emit a fault nor alarm signal during the test with aerosol-free air 4.4.2 The specimen did not emit neither an alarm nor a fault signal and Ratio of response thresholds m _{max} :m _{min} ≤ 1.6 Lower response value, m _{min} ≥ 0.05 dB m ⁻¹ 4.5 Ratio of response value, m _{min} ≥ 0.05 dB m ⁻¹ 4.6 Evaluated as meeting the requirements of TF2 toTF5 4.7.1.1 The specimen did not emit neither an alarm nor a fault signal and Ratio of response values m _{max} :m _{min} < 1.6 4.7.1.2 The specimen did not emit neither an alarm nor a fault signal and Ratio of response values m _{max} :m _{min} < 1.6 4.7.2.1 The specimen did not emit neither an alarm nor a fault signal and Ratio of response values m _{max} :m _{min} < 1.6 4.7.2.2 No fault signal, attributable to the endurance conditioning was given on reconnection of the specimen and Ratio of response values m _{max} :m _{min} ≤ 1.6 4.7.3 No fault signal, attributable to the endurance conditioning was given on reconnection of the specimen and Ratio of response values m _{max} :m _{min} ≤ 1.6	m _{max} :m _{min} ≤ 1.6 Lower response value, m _{max} :m _{min} > 0.05 dB m ⁻¹ 4.3.2 Ratio of response values m _{max} :m _{min} > 1.6 Lower response value, m _{max} :m _{min} > 0.05 dB m ⁻¹ 4.3.3 Ratio of response values m _{max} :m _{min} > 0.05 dB m ⁻¹ 4.3.3 Ratio of response values m _{max} :m ≤ 1.33 Ratio of the response values m _{min} ≤ 1.5 Lower response value, m _{min} ≥ 0.05 dB m ⁻¹ 4.4.1 Ratio is > 0.0625 and < 1.60 and the point smoke detector did not emit a fault nor alarm signal during the test with aerosol-free air 4.4.2 The specimen did not emit neither an alarm nor a fault signal and Ratio of response thresholds m _{max} :m _{min} ≤ 1.6 4.5 Ratio of response values m _{max} :m _{min} ≤ 1.6 Lower response value, m _{min} ≥ 0.05 dB m ⁻¹ 4.6 Evaluated as meeting the requirements of TF2 toTF5 4.7.1.1 The specimen did not emit neither an alarm nor a fault signal and Ratio of response values m _{max} :m _{min} < 1.6 4.7.1.2 The specimen did not emit neither an alarm nor a fault signal and Ratio of response values m _{max} :m _{min} < 1.6 4.7.2.1 The specimen did not emit neither an alarm nor a fault signal and Ratio of response values m _{max} :m _{min} < 1.6 4.7.2.2 No fault signal, attributable to the endurance conditioning was given on reconnection of the specimen and Ratio of response values m _{max} :m _{min} ≤ 1.6 4.7.3 No fault signal, attributable to the endurance conditioning was given on reconnection of the specimen and Ratio of response values m _{max} :m _{min} ≤ 1.6

Vibration resistance]	1
Shock (operational)		4.7.4.1	No fault signal given from the specimen during the conditioning period or the additional 2 min. and Ratio of response values m _{max} :m _{min} ≤ 1.6			
Impact (operational)		4.7.4.2	No fault signal given from the specimen during the conditioning period or the additional 2 min. and Ratio of response values m _{max} :m _{min} ≤ 1.6			
Vibration, sinusoidal (operational)		4.7.4.3	No fault signal given from the specimen during the conditioning and Ratio of response values m _{max} :m _{min} ≤ 1.6			
Vibration, sinusoidal (endurance)		4.7.4.4	No fault signal, attributable to the endurance conditioning was given on reconnection of the specimen and Ratio of response values m _{max} :m _{min} ≤1.6			
Electrical stability EMC immunity (operational) a) Electrostatic discharge (operational) b) Radiated electromagnetic fields (operational) c) Conducted disturbances (operational) d) Fast transient bursts (operational) e) Slow high energy voltage surge (operational)		4.7.5	No alarm or fault signal given during the conditioning and Ratio of response values m _{max} :m _{min} ≤ 1.6			EN 54-7:2018
ESSENTIAL CHARACTERISTICS	CLA	AUSE APPLICA	BLE	PERFOR	RMANCE	HARMONISED STANDARD
Performance parameters under fire conditions	4.1, 4.2.2, 5.2, 8.3.7		PA	SS		
Response delay (response time to fire)	8.2.3, 8.2.6		PASS			
Operational reliability	4.2.1, 4.2.3 to 4.2.7, 5.3, 5.4, 6, 7, 8.2.2, 8.2.4, 8.2.5, 8.2.7, 8.2.8 ^(a) , 8.2.9, 8.3.1, 8.3.2, 8.3.3, 8.3.4, 8.3.5, 8.3.6		PASS			
Durability of operational reliability, temperature resistance	8.3.9 ^(b) , 8.3.10 ^(b) , 8.3.11		PASS			
Durability of operational reliability, vibration resistance	8.3.16 ^(b) , 8.3.17 to 8.3.19		PASS		EN 54-25:2008	
Durability of operational reliability, humidity resistance	8.3.13 ^(c) , 8.3.14		4		SS	
Durability of operational reliability, corrosion resistance	8.3.15 ^(b)				SS	
Durability of operational reliability, electrical stability	8.3.20		PA	SS		

The products covered by this standard are assumed to enter the alarm condition, in an event of fire, before the fire becomes so large as to affect their functioning. There is therefore no requirement to function when exposed to direct attack from fire.

The performance of the products identified in point 1 in conformity with the declared performance in the point 8. This declaration is issued under the sole responsibility of the manufacturer identified in point 3.

La prestazione dei prodotti individuati al punto 1 è conforme alla prestazione dichiarata al punto 8. Tale dichiarazione è rilasciata sotto l'esclusiva responsabilità del fabbricante individuato al punto 3.

 $^{^{(}a)}$ Only applicable to components required to indicate loss of communication or to transmit this information to the CIE.

⁽b) Not applicable for CIE

⁽c) Only applicable for CIE and smoke detectors

This document in available on website: www.argussecurity.it (section download for each product)

Questo documento è disponibile sul sito: www.argussecurity.it (nella sezione "download" di ogni prodotto)

Signed for and on behalf of the manufacturer by:

Firmato a nome e per conto del Fabbricante da:

Technical Director
Mauro Ceppa

Trieste, Italy 01/09/2022